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Chemical Reaction Rates and Solvent Friction 
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The role of the dynamic solvent friction in influencing the rates of chemical reac- 
tions in solution is described. Features considered include (a)the bias of the 
reaction coordinate toward a direction of lesser friction in the diffusive limit, 
(b) the importance of frequency-dependent friction in atom transfers, tunneling 
reactions and isomerizations, (c) the dynamic nonequilibrium solvation in 
charge transfers which leads to a polar solvent molecule reorientation time 
dependence for the rate, and (d) the importance of internal degrees of freedom 
in the location of the Kramers turnover for isomerizations. 

KEY WORDS: Chemical reactions; transition state theory; Kramers theory; 
solvent friction; frequency-dependent friction; tunneling; Kramers turnover. 

1. I N T R O D U C T I O N  

The dynamic  rule of the solvent  in influencing the rate  of an ac t iva ted  
chemical  reac t ion  in so lu t ion  has come under  intense theore t ica l  and  
exper imenta l  scrut iny in recent  years. (1 3) A m o n g  the key i m p o r t a n t  issues 

involved are ( a ) t h e  val id i ty  of the mos t  often invoked  descr ip t ion ,  
t rans i t ion  state theory  (TST),  in which solvent  dynamics  p lay  no role, and  
(b) the p rope r  way to descr ibe  the dynamic  coupl ing  of the solvent  (called 
"fr ict ion" herein)  to the reac t ion  coord ina te .  There  are as yet few if any 
definitive answers to these ques t ions  for real  chemical  reac t ion  systems, but  
there are beginning  to be fairly s t rong indicat ions .  In  this progress ,  it  seems 

fair to say tha t  theore t ica l  cons idera t ions  have p layed  a m a j o r  role, a 
p leasan t  but  pe rhaps  a typica l  phenomenon .  

In this paper ,  we will descr ibe in fairly qual i ta t ive  terms some of our  
own theore t ica l  con t r ibu t ions  to the area. W e  focus on the centra l  ideas  
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and a few key results. Where possible, we indicate connections to 
experiments and computer simulations. (Much more exhaustive discussions 
with many more references can be found in Refs. 1-3.) 

2. K R A M E R S  T H E O R Y  

Figure 1 illustrates two important classes of potential energy curves 
for activated solution reactions. The single barrier case is typical for atom 
transfer or exchange reactions of the A + BC--, AB + C type. The double- 
well example is typical for isomerizations. Even for the latter case, we can 
often ignore the presence of the wells at solution densities (cf. Section 6). 
Then we can focus solely on the problem of the rate of passage over the 
reaction barrier, both for atom transfers and isomerizations. 

The most venerable theory for such a passage is TST, which assumes 
that, in effect, collisions of the solvent molecules with the reaction system 
simply serve to maintain the relevant Boltzmann distributions, but do not 
result in any recrossing of the barrier. In this event, the rate constant is just 
the one-way equilibrium average flux across the barrier top (fl 1= k~T) 

k T S T = ( J + ) R = ( f l h )  l __e  Q* ~e~ 
QR 

(2.1) 

and is related to reactant (QR) and transition state (Q*) partition functions 
and the activation energy in the well-known way. (4) 

One important way in which the solvent can influence the rate is by a 
static, equilibrium modification of activation energies and other activation 
parameters.(5 7) This can in fact be a fairly large effect. For  example, certain 
atom transfers are predicted (v) to be accelerated by factors of 102-103 in 
rare gas solvents owing to such static solvent effects. But in what follows, 
we will always assume that this feature has already been incorporated in 

(a) (b) 

Fig. 1. Schematic potential energy curves for (a) atom transfer and (b)isomerization. 



Chemical Reaction Rates and Solvent Friction 151 

k TST. Instead we will be concerned with the dynamic effect of the solvent in 
causing TST to fail in some way. 

The first and still very much vital theory of the dynamic effect of the 
solvent on an activated barrier passage is due to Kramers in 1940. (87 
Kramers first took the barrier to be parabolic with a barrier frequency co b 

i 9 2 X{ [such that the potential energy U ( x ) = E  ~ ~#co;x ,  with = 0  the 
transition state location and # a reduced mass]. Next Kramers modeled 
the dynamic solvent influence by a simple one-dimensional Brownian 
motion or Langevin equation treatment 

2 = coax - ~2 + R (2.2) 

Here ~ is the friction constant and R is a random force, related to r by the 
fluctuation-dissipation theorem. (9) (Actually Kramers used a strictly 
equivalent Fokker-Planck approach.) With this model, the result is the 
famous Kramers equation for the rate constant: 

k /k  J:sT= [-1 + (~/2cob)2] 1/2- (r (2.3) 

At low friction ~/2cob~l, solvent collisions are negligibly effective in 
inducing any barrier top surface recrossing, and k approaches k TsT. As the 
friction increases, solvent buffeting of the reaction system in the barrier top 
neighborhood becomes more intense, barrier top recrossing is more 
prevalent, and k diminishes below the TST value. 

In succeeding sections, we will be concerned with Eq. (2.3) as a fun- 
damental reference point for comparison with more molecular level treat- 
ments including such features as (a) the time dependence of the actual fric- 
tion experienced along the reaction coordinate, (b)the influence of any 
multidimensional character to the reaction, and (c)some quantum aspects. 

3. T H E  D I F F U S I V E  S M O L U C H O W S K I  R E G I M E  

When the solvent friction is sufficiently high (large ~) and the barrier is 
sufficiently broad or flat (small cob), the rate process can be viewed as a dif- 
fusion-controlled passage over the barrier. In this "Smoluchowski" 
regime, (1~ there is extensive solvent-induced recrossing of the barrier top 
and the rate constant can fall far below its TST value. According to the 
Kramers Eq. (2.3), k is inversely proportional to the friction constant, 

k /k  f s f  = ~oh/r (3.1) 

in this diffusive limit. 
Just this behavior has in fact been observed by Keery and Fleming (1~) 

in the isomerization of diphenyl butadiene in polar solvents. For this 
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system, it is believed that the polar solvent stabilizes the product well in the 
isomerization, thereby lowering the barrier and concomitantly reducing the 
barrier frequency to a low value. 

As we will see in Section 4, the diffusive limit is a very special case and 
is not easily reached for small molecule isomerization. This statement holds 
with even greater force for typical atom transfer reactions, to be discussed 
in Section4. Nonetheless, it is probably the case that in many 
macromolecular systems of importance in biochemistry, there will often 
occur isomerizations over low broad barriers in high-friction environments. 
There the diffusive Smoluchowski regime or something like it will hold 
sway. But it is also likely that in these systems, the reaction coordinate is to 
some degree cooperative, i.e., several groups must act in concert for, e.g., an 
isomerization process to occur. The reaction is then multidimensional in an 
essential way, and several interesting things can happen, as we now discuss. 

Perhaps the most striking manifestation of multidimensional diffusive 
effects is that the friction can actually change the reaction path. ~12'13) We 
can illustrate the phenomenon by a simple model. (121 The model is intended 
to represent an intrinsic reaction event in which two inner particles are on 
a potential barrier, while they also are connected by potential springs to 
two outer particles. Each particle is supposed to be overdamped by its fric- 
tional interaction with the surroundings; but by a certain shielding effect, 
the friction on the inner particles is less than that experienced by the outer 
particles. There is thus a frictional asymmetry. 

The central feature of the reaction path change can be understood as a 
competition between the forces derived from the potential energy on the 
one hand and those derived from the friction on the other. A natural initial 
focus is on the potential forces. This is best carried out in terms of a normal 
mode analysis on the model, which gives ~2/ the potential energy picture 
and normal modes shown in Fig. 2. In the reactive mode Pr, the inner par- 
ticles separate in concert with the outer ones, while in the nonreactive 
mode Pn, the outer particles oppose the reaction. 

But if we instead focus on the frictional forces, the natural description 
is in terms of two different frictional modes, obtained by diagonalizing the 
friction tensor and shown in Fig. 2. These two modes labeled f~o and fhi 
correspond, respectively, to the separation of the inner low-friction par- 
ticles and the outer, higher-friction particles. 

Neither of these mode pairs gives the complete picture of the reaction, 
which requires instead the idea of mode coupling. ~12 ~4) For  example, the 
reaction can proceed at a higher rate not by exclusive motion in Pr, in 
which high frictional forces are experienced by the outer particles, but by 
mixing in some Pn motion. The net effect of this mixing is to have a smaller 
component of the heavily damped motion of the outer particles involved in 
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Fig. 2, (a) The reactive (Pr) and nonreactive (Pn) potential modes and (b)the frictional 

modes flo and fhi for the four particle model described in text. 

the net reactive motion. This is a bias toward lower friction. But that bias 
certainly cannot be continued forever, since there are restoring, i.e., non- 
reactive potential, forces on the p~ mode. The potential force-frictional 
force competition is clearly revealed here. 

Figure 3 shows an actual reaction path that displays such a bias 
toward least friction. The result of this bias is that in extreme cases the rate 

\ 

/ 

f h i  
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Pn 

Fig. 3. Illustration of the mode coupling induced bias of the reaction coordinate ( - - - )  
toward the direction of least friction. In the absence of coupling, reaction would be along Pr ; 
instead it has a component along f~o. 
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constant k can be up to an order of magnitude greater than that predicted 
( - k o )  by ignoring the multidimensional aspects. These features and the 
mode-coupling aspects are inherent in the explicit general two-mode 
formula ~2) 

k/ko = [27(1 - c~)] - - 1 { (  7 - -  1) + [(1 + 7) 2 - 47c~] 1/2} 

2 2 2 
O~ = ~rn/~rr~nn,  7 = ( c o , / ~ r r ) / ( c o . / ~ n n )  

(3.2) 

in terms of the frictional coupling parameter ~ in which ~rn is the frictional 
mode coupling, and the parameter 7 measures the uncoupled diffusive 
motion in the normal mode force field. 

More recent work (14'15) in this area has shown that when the frictional 
asymmetry varies during the barrier passage, there is a further interesting 
effect: the potential saddle point can be avoided altogether. 

4. F R E Q U E N C Y - D E P E N D E N T  FRICTION 

As noted above, the diffusive Smoluchowski regime is generally not 
reached in small molecular systems at ordinary viscosities. Thus we could 
fall back on the Kramers result Eq. (2.3) to describe the rate constant all 
the way down to the low-friction values for which k ~ k  TsT. 

But it must be recalled that the Kramers Eq. (2.3) relies on a 
macroscopic Brownian motion model, in which the solvent forces act 
instantaneously (the Markovian approximation). Not only are short-range 
collisions between the reaction system and the solvent molecules assumed 
to be instantaneous, but long-lived collective effects are also taken to act 
impulsively. This doubly drastic approximation is known to be poor even 
in nonreactive problems. It leads for example to a complete missing of the 
caging oscillations in velocity correlations ~) of importance for molecular 
translation in liquids. 

The situation is even worse for the reaction problem, since there is a 
short time scale of critical importance. If we imagine an effective particle in 
an atom transfer A + BC --, AB + C on the barrier top of (high-) frequency 
co b , then the strong potential barrier forces will rapidly accelerate the par- 
ticle toward products. Unless the solvent forces are strong enough and 
rapid enough to induce recrossing in a time of order cob ~, they are 
irrelevant in impeding that barrier passage. Typical barrier frequencies are 
fairly (2~ high (1013-1014 see 1), and the associated times are often shorter 
than ,,~ 0.1 psec. Clearly the short time scale aspects of the solvent frictional 
forces need to be accounted for. 
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Grote and Hynes (~6) incorporated this feature by assuming a non- 
Markovian generalized Langevin equation (GLE) for the reaction coor- 
dinate: 

x(t)=co~x(t)- d, ~(t- ,).;:(,)+ R(t) (4.1) 

Here the time-dependent friction coefficient 

~(t) oc <RR(t) ) (4.2) 

is the correlation function of the fluctuating solvent forces or torques exer- 
ted along the reaction coordinate. In this context, the Kramers theory 
corresponds to the unphysical ~ function behavior ~(t)= ~6(t), where the 
friction constant ~ gives the long time integrated effect of the solvent forces. 

With the GLE description, the reaction rate constant k can be 
evaluated via a flux time correlation function approach developed by 
Northrup and Hynes. ~ The resulting Grote-Hynes (GH) formula for k, 

k/kTSV=2/cob= { I  + [C(2)/2cob]=} 1/2- [((2)/2cob] (4.3) 

has a pleasing aspect: it looks just like Kramers Eq. (2.3) but for the 
presence of the frequency-dependent friction 

(().) = I o  dt e-~'~(t) (4.4) 

evaluated at the reactive frequency )o.(16) [The GH formula has sub- 
sequently been found in a different way by Hanggi and Mojtabai. (18)] 
While 2 must generally be found self-consistently, the important case where 
it is approximately the barrier frequency cob illustrates the key points. On 
short time scales ~cob -1, there is often very little friction: ((cob) is small. 
This indicates first that k ~ k  Tsv will in fact be a very good approximation 
for sharp barrier reactions. (One often sees contrary statements in the 
literature to the effect that "TST is never a good approximation.") Second, 
it says that sharp barrier reactions will "track" the short time friction, and 
not be very sensitive to the longer time, hydrodynamic, or collective effects 
that can do so much to increase the overall long time friction constant ~. 
One consequence of this is that k for a sufficiently sharp barrier reaction 
will not necessarily track the increasing solvent viscosity ~ (when in fact 
~oct/) as Kramers' theory would have it; rather the rate will decline at 
some diminished rate dependent on the details of the short time friction. 
Figure 4 depicts the situation. 
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Fig. 4. 
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Illustration of the differing behavior of • for an atom transfer reaction according to 
the Kramers  and Grote -Hynes  descriptions. 

Indeed, results similar to Fig. 4 are obtained for a model sharp barrier 
atom transfer rate constant calculation in which the  molecular dynamics 
time-dependent friction of Ar (t9) was modified (2~ systematically increase 
the collective hydrodynamic tail of ~(t). This procedure increases the 
overall long time friction constant ~, while leaving the short time collisional 
aspects of ~(t) alone. The rate constant is only sensitive to the latter and 
not to the former as the Kramers theory would predict: k is not tracking 
the long time friction. (At extremely high friction, k will eventually begin to 
track it. (21)) 

Evidence on these predictions is gradually accumulating. For  example, 
in a recent molecular dynamics computer study for a model 20-kcal barrier 
exchange reaction C1 + C12 in liquid Ar, no solvent induced recrossing at all 
was observed. (22) An older experimental example is (possibly) provided by 
the activated iodine-vinyl iodide exchange reaction. (23) For this reaction, 
the rate is nearly the same in solvents that differ by a factor ~ 100 in 
viscosity. 

Additional recent support has come from the isomerization 
experiments of the Fleming group (24) and the Barbara group. (2s) The high- 
viscosity Kramers behavior k oc q 1 was not observed. Rather k was found 
to decrease less rapidly, as k oct t ~ with c~ < 1. In each case, a frequency- 
dependent hydrodynamic model friction was employed in the Grote-Hynes 
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formula, and good agreement is obtained with the experimental results. 
(Other experimental results (26'27) are relevant here as well.) This is certainly 
very encouraging, but it must be appreciated that even now we do not 
know for certain what the time-dependent friction is for any reaction- 
solvent system. Here is a glaring lacuna that requires attention, perhaps 
from the point of view of molecular dynamics simulation studies. 

In concluding this section, we note that there are a few interesting 
model cases where analytic results for ~c are available. (28'z9~ These results 
may be of interest for reactions in solids and for investigating the influence 
of nearby polar solvent molecules in strong interaction with reacting ionic 
and dipolar species. (29) Perhaps the simplest soluble case is for an unstable 
two particle (each of mass M) oscillator on a parabolic barrier with the fre- 
quency cob, each harmonically coupled with frequency coc to an infinite 
chain of particles (of mass M) harmonically coupled with frequency co o. A 
particularly nice result obtains for coc = coo and m = M(28): 

( 2o92 ~1/2 
~< = \ ~ - T  ~co2] (4.5) 

For a sharp barrier cob/coo>> 1, the TST result •= 1 holds. For  a broad 
barrier and "loose" solvent springs cojco o <~ 1, ~: is reduced to xf2co~/co 2 by 
an "effective mass" phenomenon: the central reacting particle pair has to 
"push" the stiff surroundings out of the way. If the harmonic bath is 
located only on one side of the reacting pair, as for example for a reaction 
on a surface, then (2s) 

In the stiff bath limit cob/co0~l, ~ is only reduced to (1/2) 1/2. This 
corresponds to the feature that the effective reduced mass for the reactive 
pair is increased from m/2 to limmL~ oo[rnmL/(rn + mL)] = m: the reaction 
proceeds simply by motion of that reactive particle which is located away 
from the bath. Related results have been worked out (28) for A + BC reac- 
tions in infinite and semi-infinite chains. 

5. H Y D R O G E N  A T O M  T U N N E L I N G  IN S O L U T I O N  

The importance of the short time aspects of the friction can be 
revealed in another type of reaction: H atom tunneling. A good example 
here is the transfer of an H atom in the methyl radical-methane exchange 
reaction C*H 3 q- CH 4 --+ C*H 4 q- CU 3. 
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The C H 3 - C H  4 c a s e  is an example of a "heavy light-heavy" system in 
which the light H atom moves on a time scale fast compared to the heavier 
flanking groups. For such systems, the dynamics are conveniently described 
in an appropriate skewed and scaled coordinate system (Fig. 5a). The 
radius p is approximately the heavy particle separation, while the angle 0 is 
approximately the light H atom coordinate. In these variables, an evolving 
double well is apparent as the reactants approach (Fig. 5b). 
Simultaneously, the overall energy in p rises as the partners are squeezed 
together. The reaction can thus be considered in terms of an evolving 
double well, coupled to the passage in and out along the heavy particle 
coordinate p on a repulsive potential. 

(a) 

"h~ (t) 

(b) 
Fig. 5. (a) Skewed coordinates for a heavy-light-heavy reaction with polar coordinates 
indicated. (b) Evolving double well in the H atom coordinate 0 as mot ion in p occurs. The 
tunnel splitting is indicated. 
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Ali and Hynes have developed a time-dependent semiclassical theory 
to describe the rates of such transfers in the gas phase and in solution. (3~ 
We focus first on the gas phase. At large p, the double-well (DW) barrier is 
high, the H-CH 3 vibrations are degenerate in the two wells and there is no 
tunneling. As p decreases however, the DW barrier drops and narrows, 
such that tunneling is possible. The H vibrational levels split in con- 
sequence. At a given p value, a system in the reactant well will tunnel to the 
product well with a frequency co(p)=AE/h (Fig. 5b) determined by the 
splitting AE(p):pR~e(t)=sin2{le)[p(t)]}. In the dynamic reaction 
problem there is a changing p(t), and thus an evolving DW. Together with 
an adiabatic approximation for p and 0, an infinite-order perturbation 
theory treatment gives (3~ 

tun �9 2 1 fo ~ pR_~ p= sin ~ dtco[p(t)] (5.1) 

for the overall tunneling probability. The reaction rate constant can be 
obtained by the flux correlation function formula 1171 

k= dt(j i jo(t))  R (5.2) 

involving the incoming flux Ji into the p region where tunneling is possible 
and the subsequent outgoing flux J0 into the p region where tunneling is 
again negligible. The average is over equilibrium initial conditions for the 
reactants. Evaluation of this with Eq. (5.1) gives (3~ 

kor dEp(E) -tun 'E' (5.3) FR ~ pt t 

in which p(E) is the equilibrium distribution for energy in the p coordinate. 
The accuracy of Eq. (5.3) has been verified by comparison with quan- 

tum calculations. (31) The important lesson is that at 300 K, the reaction is 
90 % tunneling, i.e., ~90 % of the reactive trajectories tunnel below the 

classical barrier. 
To discover how a simple inert solvent could influence this tunneling 

process and rate, a model was adopted in which (a)the central H atom is 
screened from interaction with the solvent but (b)the heavy particle 
classical motion along p in interaction with the solvent is governed by a 
generalized Langevin equation. Then the rate constant is given by (3~ 

1 ~ co[p(t)])sol v (5.4) kOCfo dEp(E)(sinZ-~f ~ dt 
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where the dynamical solvent average must be carried out. It is calculated 
for the CH3 + CH4 reaction in high-density Ar solvent at 300 K that k/k TsT 
is nearly the same as in the gas phase. 

The essential point is that the inert solvent appears to have very little 
effect on the tunneling. (For example, the deuterium isotope effect should 
be essentially unchanged on going from gas to inert solution.) The origin of 
this feature is simple. The region on the steeply repulsive E(p) curve for 
which tunneling can occur is small and very little time (~0.05 psec) is 
spent by the system there. On this time scale, the solvent has essentially no 
time to exert a dynamic effect. Here again we see a frequency-dependent 
friction effect. The short-time friction is what counts; indeed quite a dif- 
ferent and incorrect picture results if the long-time friction is assumed to be 
relevant. (30) 

Unfortunately, while the C H 3 + C H  4 reaction has been studied at 
higher temperatures in the gas phase, (32) no experimental results in solution 
are currently available. This may soon change, since the 13CH3 + lZCH4 
reaction should be susceptible to ESR kinetic study in solution. (33~ 

Frequency-dependent friction is also important in more abstract 
treatments of quantum tunneling in a solvent or some more general bath. 
For example, Wolynes (34~ has generalized the Kramers equation to the 
tunneling of a quantum particle through a parabolic barrier in contact with 
a bath. If a frequency-independent friction constant ~ is used, the tunneling 
is rapidly suppressed with increasing ~.(34) But the application of the 
Wolynes formula to the parabolic barrier tunneling of a proton in polar 
solvents with frequency-dependent dielectric friction gives a different 
picture. (35) In order for the friction to be well described by a constant ~, the 
barrier frequency cob must be fairly low. But this means that the barrier is 
wide and tunneling is negligible in the first place. When instead cob is high, 
the barrier is thin and tunneling is certainly important in the absence of the 
solvent. But at such high cob values, the frequency-dependent friction is 
small and there is little suppression of the tunneling. (35) (See the paper by 
Hanggi in the present issue for further discussion of tunneling.) 

6. CHARGE TRANSFER REACTIONS 

With the exception of Section 2, we have been concerned so far with 
what might be termed "weak coupling" of a neutral reaction system with a 
nonpolar or weakly polar solvent. We now turn to reaction rates for ionic 
and dipolar systems in polar solvents. Here we expect strong reaction 
system-solvent coupling with attendant consequences for reaction rates. 
Typical reaction classes in which charge redistribution or transfer occurs 
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are SN1 and SN 2 reactions, proton transfers, electron transfers, and 
cis trans and other dipolar isomerizations. 

The TST approach to such reactions is of course well-known. (36) It 
focuses on the activation free energy and its variation with reactant and 
transition state polarity and with the solvent polarity. Figure 6 displays a 
representative free energy diagram from which the solvent influence on the 
reaction rate would be inferred. 

But this picture represents only part of the story, since it involves the 
assumption of equilibrium solvation. It is supposed that the solvent dipoles 
are in equilibrium at each and every point along the reaction coordinate 
associated with the charge distribution. While this Born-Oppenheimer-type 
approximation allows a discussion in terms of free energies, it ignores the 
fact that the solvent dipole reorientation required for this equilibration 
takes time and may not be complete as the charge system moves along its 
reaction coordinate. This state of affairs represents nonequilibrium solvation 
and leads (29'37) to a reduction of the actual rate k below its TST 
approximation k TsT to an extent related to the reorientation time of the 
solvent dipoles. 

van der Zwan and Hynes (29'37) have examined these questions for sim- 
plified models of charge transfers and dipolar isomerizations, in which the 

G 
/ ' ~  / NONPOLAR 

/ 'T 

RCT TS 

Fig. 6. Schematic free energy plot for the case where the transition state is more polar than 
the reactants, in nonpolar  and polar solvents. The TST view is that the activation free energy 
is lowered in the latter case. 
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so-called longitudinal relaxation time z measures the relevant solvent 
dipole reorientation time. (38~ The theory predicts that the rate behavior will 
depend sensitively on whether there is strong coupling (low barrier fre- 
quency, high charge density, high solvent polarity) or weak coupling (high 
barrier frequency, low charge density, modest solvent polarity). 

In the strong-coupling limit, the rate drops as the solvent reorientation 
time r increases. In fact, in the limit of a slowly relaxing solvent, k is inver- 
sely proportional to r. (This can be viewed as the Smoluchowski limit with 
the friction being of a dielectric character. (37)) Here it is the solvent motion 
that is rate limiting in the following sense. For  large r, the forces governing 
the barrier motion of, say, a charge are of two types. The chemical for- 
ces--arising from electronic molecular interactions within the reaction 
system--are approximately parabolic and drive the charge on to products. 
The solvent forces however form a "polarization cage ''(37) (Fig. 7) of fre- 
quency oJc, confining the charge to its current position. In the strong- 
coupling limit, the latter dominates and the charge is temporarily trapped. 
On any finite time scale, however, the solvent molecules reorient, the cage 
disappears, and the reaction eventually proceeds. The rate is thus governed 
by the solvent dynamics and k ocr 1: 

k = k TsT COb/CO~r (6.1) 

Indeed this process can be described (29~ in terms of motion along a 
solvent coordinate, which must be combined with the intrinsic charge coor- 
dinate to describe the true reaction coordinate. Equivalently stated, the 
solvent is a key participant in the reaction coordinate. This is a perspective 
totally absent in TST. 

In the opposite weak-coupling limit, the rate is much less sensitive 
to r. The chemical forces driving the charge down the barrier overwhelm 

/Z 
(o) (b) (c) 

Fig. 7. Schematic illustration of the polarization cage. (a) Chemical parabolic barrier for the 
reaction system determined by internal electronic forces; (b) the reaction system-polar solvent 
caging potential; (c) the net polarization cage existing when the curvature of (b) exceeds that 
of (b) for a slowly relaxing solvent. 
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any weak polarization caging forces. Thus reaction can proceed relatively 
unhindered even in the presence of nearly "frozen" solvent dipoles. In fact, 
this is the analog of the frequency-dependent friction feature of the failure 
of k to track the viscosity discussed in Section 4. Here the limiting rate is in 
fact independent of r~37): 

k = kTST[(cO~ -- C02)/C0~] 1/'2 (6.2) 

Experimentally, there has yet to be any extensive systematic study of 
the dynamic role of solvent reorientation on reaction rates. But in a recent 
example in the Jonas group,(39) it is observed that the 1,1- 
difluorocyclohexane inversion, which involves a changing molecular dipole 
moment, is slower in more polar solvents than in less polar. While this is 
encouraging, all sources of friction and barrier height changes need to be 
sorted out. Another possible example is due to Caldin and Mateo, (4~ who 
interpreted their proton transfer study results as a decrease in tunneling in 
polar solvents due to the coupling to the solvent. While this is probably 
intimately related to our ideas, at the moment there is no realistic dynamic 
theory for quantum reactions of this type in polar solvents. Finally, similar 
ideas emerge in electron transfer reactions, (41~ and recently evidence for a 
k oc r -1  behavior has been found for redox reactions at electrodes by the 
Weaver group. (42) 

Part of the theoretical problem here is our lack of real knowledge 
about the molecular level time-dependent friction due to Coulomb interac- 
tions. It has been proposed recently (43) that time-dependent fluorescence in 
polar solvents could provide some desperately needed information here. 
Another possible route is via molecular dynamics computer simulations; 
these are underway for a n  Su2 reaction in water. 

7. I S O M E R I Z A T I O N  REACTIONS 

We have already described some isomerizations in the regime where 
all relevant dynamics occur in the barrier passage part of the problem. But 
beginning with Kramers, (a) the role of dynamics in the reactant and 
product wells in Fig. 1 has also been of concern. In o u r  v i e w ,  (2'44) this is a 
question of vibrational energy transfer (VET) (recall that, e.g., torsional 
motion is vibrational). If the friction is sufficiently low, then the VET rate 
of providing activated complexes on the reactant side and the VET rate of 
stabilizing "hot" nascent products can become rate limiting. In this regime, 
k falls below k vsT and in the extreme limit k is proportional to ~. It is often 
overlooked that Kramers himself gave a simple one dimensional Brownian 
motion treatment of this problem in his original paper. (8~ From a chemical 
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point of view, the low friction regime is simply the bimolecular regime of a 
unimolecular reaction so familiar from the Lindemann and RRKM 
perspectives. ~a6'45) 

Thus the overall Kramers picture for an isomerization is that starting 
from low-friction ~, k will initially increase with ~, reach a maximum 
somewhere near k vsT, and ultimately decline with ~. In the direction of 
decreasing ~, this has come to be called the "Kramers turnover." In 
previous sections, we have been concerned exclusively with the two latter of 
these three aspects; here we will focus on the first and second. 

To proceed, we require an expression for k over the entire friction 
range. For a symmetric double well such as displayed in Fig. 1, Hynes (2~ 
has proposed the connection formula 

k '~-kbX+(kd/2)  1 (7.1) 

Here k 6 is just the barrier rate constant Eq. (4.3) which governs the barrier 
passage portion of the problem. Next, ka is a VET rate constant associated 
with vibrational energy diffusion in the wells. The factor of 2 accounts for 
the requirement that both vibrational activation of the reactant and 
vibrational deactivation of the product is required for successful reaction, 
Indeed, Eq. (7.1) simply states that the reaction time is the sum of the time 
for activation of the reactant, the time of barrier passage, and the time for 
deactivation of the products. If VET is fast compared to barrier passage, 
then k ---, kb ; if VET is slow compared to barrier passage, then k ~ kd/2 and 
VET is the rate-limiting step. [-Asymmetric wells require a formula similar 
to but more complex than Eq. (7.1).(217] 

An essential feature of the VET rate constant is the role of the 
additional internal degrees of freedom, s - 1  in number, coupled to the 
reaction coordinate. As this number increases, the VET aspect of the rate 
should become increasingly mute. Contrast, for example, the fate of 
vibrationally hot nascent product in the one-dimensional case when s = 1 
and in the multidimensional case for s ~ 5  10. In the former case, the 
solvent must perform the deactivation chore before barrier recrossing. In 
the latter case, presumably rapid intramolecular vibrational energy flow 
places energy in many degrees of freedom other than the reaction coor- 
dinate. This can subsequently be taken off by the solvent before it can find 
its way back to the reaction coordinate. Indeed this feature can be revealed 
from the k a formula (21,46) 

ff I) kd I = dE[D(E) e ze] 1 dE' p(U) e -z"' (7.2) 

in which p(E) is the density of states, E ~ is the barrier height, and 

Sfo  D(E) = fi 'N(E) 2.=1 dt (g(D ~,(t) (7.3) 
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is the VET diffusion coefficient. The latter involves the number of states up 
to energy E, N(E), and the sum of the time-dependent friction ~i(t) exerted 
on each mode, probed at the frequencies of the mode motions determined 
by microcanonical mode velocity correlations ~i(t). For /~E*>> 1 and s~> 1, 
kd reduces very approximately t o  (21'46) 

kd~ ~ e  ~e~Ze-(~ (7.4) 
i 

where Z is the collision frequency and r,, is the coherence time of the short- 
range frictional forces. In the one dimensional case, this formula 
emphasizes the importance of frequency-dependent friction on the rate of 
vibrational energy transfer between the isomerizing molecule and the 
s o l v e n t .  (44'47) But the central feature of Eq. (7.4) to be emphasized here is 
the rapid growth of kd with degrees of freedom and barrier height. The con- 
sequence of this for the rate is that (21'46) in the direction of decreasing fric- 
tion, the Kramers turnover will recede to very low friction and k vsT will be 
more closely approached. In short, while many approximate one-dimen- 
sional treatments (48) predict the existence of the turnover in the liquid 
phases, a more realistic multidimensional treatment will predict that turn- 
over to instead be in the gas phase. Figure 8 gives a schematic illustration. 

MD 

K 

0 
0 

~l~o b 
Fig. 8. Schematic illustration of the differing behavior of an isomerization rate transmission 
coefficient when s = 1 lone-dimensional  (1D)] and when s is about  5-10 [mult idimensional  
(MD)] .  
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An additional striking feature is that the turnover region, which is narrow 
in simple one-dimensional models, becomes considerably broader with 
increasing degrees of freedom.(2~'46) 

We have applied our theory to several cases for which experimental or 
computer simulation results are available, and two illustrations suffice here. 
For  the trans to gauche butane isomerization in CCl4, we estimate that 
s~3 ,  owing to the coupling of only low-frequency CCC bending motions 
to the reaction coordinate. For  this case, s is low enough and the barrier 
height ~ 3 kcal/mol is also low enough that the VET rise of k can occur in 
liquid solvent. This is in agreement with a previous molecular dynamics 
computer simulation result. (49) 

But we believe that a liquid phase turnover will be comparatively 
rare-- the  one- or few-dimensional case is not the paradigm. A more typical 
example is stilbene isomerization, for which E* is about 3 kcal/mol as in 
butane, but with s ~ 6. We predict no turnover in the liquid phase, whereas 
one would be predicted from an s = 1 perspective. In this event, attention 
turns to where the turnover occurs in the gas phase. We have estimated (2~/ 
the location of the gas phase turnover for stilbene isomerization in gaseous 
methane at 300 K to be about 40-70 atm. This is in fact in reasonable 
agreement with the experimental estimates of the Fleming group. (5~ 

In the context of the role of the internal degrees of freedom in locating 
the turnover, mention must be made of the experimental results of the 
Jonas group (51) on solution phase cyclohexane inversion. These results have 
been interpreted (51) as displaying a turnover in the liquid phase, and assor- 
ted one-dimensional theories (47'52) have been applied to the reaction. 

Our multidimensional calculations with s ~ 6  (21) instead indicate that 
the turnover is more likely to occur in the gas phase. Further, our theory is 
in reasonable accord (2~1 with experiments on cyclohexane inversion in gas 
phase SF6, (53) where it found that the rate constant apparently reaches its 
(gas phase) high-pressure limit at about 2 5 atm. It may be that the 
resolution of the questions now clearly raised about cyclohexane inversion 
involves a static effect: a pressure dependence of the TST activation 
volume (7'2~) not accounted for in Ref. 51, but the issue certainly remains 
open. 

8. C O N C L U D I N G  R E M A R K S  

I have tried to summarize here a few of the number of ways that 
solvent friction and the character of that friction can influence the rate of 
various reaction classes in solution. Still other reaction classes, such as 
radical recombination, (54) could have been discussed. But it should be clear 
that while few definitive answers are as yet available, there are a spate of 
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effects to look for, and questions which at least are now posed. The next 
few years should shed considerable light on the questions raised so far and, 
we hope, provide the next generations of questions to replace them. 
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